Separation of Variables for Symplectic Characters

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restricting Unipotent Characters in Finite Symplectic Groups

We compute the irreducible constituents of the restrictions of all unipotent characters of the groups Sp4(q) and Sp6(q) and odd q to their maximal parabolic subgroups stabilizing a line. It turns out that these restrictions are multiplicity free. We also obtain general information about the restrictions of Harish-Chandra induced characters.

متن کامل

Separation of variables for the Ruijsenaars system

We construct a separation of variables for the classical n-particle Ruijsenaars system (the relativistic analog of the elliptic Calogero-Moser system). The separated coordinates appear as the poles of the properly normalised eigenvector (Baker-Akhiezer function) of the corresponding Lax matrix. Two different normalisations of the BA functions are analysed. The canonicity of the separated variab...

متن کامل

Action of Automorphisms on Irreducible Characters of Symplectic Groups

Assume G is a finite symplectic group Sp2n(q) over a finite field Fq of odd characteristic. We describe the action of the automorphism group Aut(G) on the set Irr(G) of ordinary irreducible characters of G. This description relies on the equivariance of Deligne–Lusztig induction with respect to automorphisms. We state a version of this equivariance which gives a precise way to compute the autom...

متن کامل

Separation of Variables . New Trends

The review is based on the author’s papers since 1985 in which a new approach to the separation of variables (SoV) has being developed. It is argued that SoV, understood generally enough, could be the most universal tool to solve integrable models of the classical and quantum mechanics. It is shown that the standard construction of the action-angle variables from the poles of the Baker-Akhiezer...

متن کامل

Separation of Variables in Perturbed Cylinders

We study the Laplace operator subject to Dirichlet boundary conditions in a two-dimensional domain that is one-toone mapped onto a cylinder (rectangle or infinite strip). As a result of this transformation the original eigenvalue problem is reduced to an equivalent problem for an operator with variable coefficients. Taking advantage of the simple geometry we separate variables by means of the F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Letters in Mathematical Physics

سال: 2011

ISSN: 0377-9017,1573-0530

DOI: 10.1007/s11005-011-0467-z